jueves, 19 de mayo de 2016

ejemplos de movimiento angular

ejemplos de movimiento angular

Ejemplo. En el modelo de Bohr del átomo de hidrógeno, un electrón gira alrededor de un protón en una órbita circular de 5.29 x 10^-11 m de radio con una rapidez constante de 2.18 x 10^6 m/s. ¿Cuál es la aceleración del electrón en este modelo del átomo de Bohr?
Se tiene el valor del radio y de la rapidez de la partícula y además la rapidez es constante. Con la relación de M.C.U. se puede encontrar la aceleración:
Aplicación de Movimiento Circular Uniforme
EjemploUna partícula P viaja a velocidad constante en un círculo de 3 m de radio y completa una revolución en 20 s (véase la figura). a) encuentre el valor de la aceleración; b) la rapidez con la que viaja.
Aplicación de Movimiento Circular Uniforme
a) Los datos dados son el período T y la velocidad de la partícula, con ellos, se puede obtener la aceleración:
Movimiento Circular Uniforme
b) La rapidez se encuentra mediante la relación de la aceleración y el radio:
Movimiento Circular Uniforme
EjemploUn astronauta está girando en una centrífuga de 5.2 m de radio. a) ¿Cuál es su velocidad si la aceleración es de 6.8 g?; b)¿Cuántas revoluciones por minuto se requieren para producir ésa aceleración?.
a) Se sabe que el valor de g es el de la aceleración de la gravedad (9.8 m/s^2). Entonces:
Movimiento Circular Uniforme
b) El período T se encuentra:
Movimiento Circular Uniforme
Por definición: 1 revolución se da en 1.75 s, entonces:
Movimiento Circular Uniforme
En el movimiento circular general, al inverso del período se le conoce como frecuencia.
Movimiento Circular Uniforme
donde f es la frecuencia (número de vueltas por unidad de tiempo) y sus unidades son 1/s.

MOVIMIENTO CIRCULAR UNIFORMEMENTE ACELERADO – MCUA

El movimiento circular uniformemente acelerado (MCUA) se presenta cuando una partícula o cuerpo sólido describe una trayectoriacircular aumentando o disminuyendo la velocidad de forma constante en cada unidad de tiempo. Es decir, la partícula se mueve con aceleración constante.
En el dibujo se observa un ejemplo en donde la velocidad aumenta linealmente en el tiempo. Suponiendo que el tiempo en llegar del punto P1 a P2 sea una unidad de tiempo, la partícula viaja con una aceleración tangencial uniforme v, incrementándose esa cantidad en cada unidad de tiempo.

Posición

Dibujo de la posición de una partícula en un movimiento circular uniformemente acelerado (MCUA)
El desplazamiento de la partícula es más rápido o más lento según avanza el tiempo. El ángulo recorrido (θ) en un intervalo de tiempo t se calcula por la siguiente fórmula:

Fórmula del ángulo recorrido por una partícula dependiendo del tiempo en un movimiento circular uniformemente acelerado (MCUA)
Aplicando la fórmula del incremento de ángulo calculamos la posición en la que estará la partícula pasado un tiempo t se obtiene la fórmula de la posición:

Fórmula de la posición de una partícula en un movimiento circular uniformemente acelerado (MCUA)

Velocidad angular

La velocidad angular aumenta o disminuye linealmente cuando pasa una unidad del tiempo. Por lo tanto, podemos calcular la velocidad angular en el instante t como:

Fórmula de la velocidad angular de una partícula en un movimiento circular uniformemente acelerado (MCUA)
El sentido de la aceleración angular α puede ser contrario al de la velocidad angular ω. Si la aceleración angular es negativa, seria un caso de movimiento circular uniformemente retardado.

Velocidad tangencial

La velocidad tangencial es el producto de la velocidad angular por el radio r. La velocidad tangencialtambién se incrementa linealmente mediante la siguiente fórmula:

Fórmula de la velocidad tangencial de una partícula en un movimiento circular uniformemente acelerado (MCUA)
Dándose aquí igualmente la posibilidad de aceleración negativa que se ha descrito en el apartado anterior.

Aceleración angular

La aceleración angular en el movimiento circular uniformemente acelerado es constante. Se calcula como el incremento de velocidad angular ω desde el instante inicial hasta el final partido por el tiempo.

Fórmula de la aceleracion angular de una partícula en un movimiento circular uniformemente acelerado (MCUA)

Aceleración tangencial

La aceleración tangencial en el movimiento circular uniformemente acelerado MCUA se calcula como el incremento de velocidad v desde el instante inicial hasta el final partido por el tiempo.

Fórmula de la aceleracion tangencial de una partícula en un movimiento circular uniformemente acelerado (MCUA)

Aceleración centrípeta

La aceleración centrípeta en el MCUA se halla mediante:

Fórmula de la aceleración centrípeta en el movimiento circular uniformemente acelerado(MCUA)

Componentes intrínsecas de la aceleración

Dibujo de las componentes intrínsecas de la aceleración en el movimiento circular.
La velocidad tangencial por la trayectoria en un punto P es v. En un intervalo de tiempo pequeño Δt, la velocidad incrementa a v’ en el punto P’, después de haber descrito un ángulo Δφ.
En la figura se puede ver el incremento de la velocidad tangencial Δv descompuesta en dos componentes: la tangencial Δvt y la normal (ocentrípeta) Δvn.
Si dividimos ambas componentes de la velocidad por Δt, tendremos las componentes intrínsecas de la aceleración: la aceleración tangencial at y la aceleración normal an (o centrípeta).

Período

En el MCUA la velocidad angular cambia respecto al tiempo. Por tanto, el período cada vez será menor o mayor según si decrece o crece la velocidad angular.

Fórmula del período en el movimiento circular uniformemente acelerado (MCUA)

Frecuencia

La frecuencia en el caso del MCUA es mayor o menor porque la velocidad angular cambia. La fórmula de la frecuencia será:

Fórmula de la frecuencia en el movimiento circular uniformemente acelerado (MCUA)

ejercicios de movimiento circular uniforme

En un ciclotrón (un tipo acelerador de partículas), un deuterón (de masa atómica 2u ) alcanza una velocidad final de 10 % de la velocidad de la luz, mientras se mueve en una trayectoria circular de 0,48 metros de radio. El deuterón se mantiene en la trayectoria circular por medio de una fuerza magnética. Que magnitud de la fuerza se requiere?
Velocidad de la luz = 3 X 108 m/seg
Velocidad del deuterón = 3 X 107 m/seg
Masa deuterón 2u = 2 * 1,661 X 10-27 kg.
Masa deuterón 2u = 3,322 X 10-27 kg.
F = 6,2287 * 10-12 Newton







Una cuerda ligera puede soportar una carga estacionaria colgada de 25 kg. antes de romperse. Una masa de 3 kg unida a la cuerda gira en una mesa horizontal sin fricción en un circulo de 0,8 metros de radio. Cual es el rango de rapidez que puede adquirir la masa antes de romper la cuerda?
La cuerda se rompe cuando se le cuelgue una masa de 25 kg. Entonces podemos calcular la máxima tensión que soporta la cuerda antes de romperse.
TMAXIMA = m * g = 25 kg * 9,8 m/seg2 = 245 Newton.
Con la tensión máxima que soporta la cuerda antes de romperse, se calcula la máxima velocidad que puede girar la masa de 3 kg antes de romper la cuerda.
Despejando v

Aceleración

Aceleración

En física, la aceleración es una magnitud vectorial que nos indica la variación de velocidad por unidad de tiempo. En el contexto de la mecánica vectorial newtoniana se representa normalmente por \vec a \, o \mathbf a \, y su módulo por a \,. Sus dimensiones son \scriptstyle [ L \cdot T^{-2} ]. Su unidad en el Sistema Internacional es m/s2.
En la mecánica newtoniana, para un cuerpo con masa constante, la aceleración del cuerpo es proporcional a la fuerza que actúa sobre el mismo (segunda ley de Newton):

   \mathbf{F} =
   m \mathbf{a}
   \quad \to \quad
   \mathbf{a} =
   \cfrac{\mathbf{F}}{m}
donde F es la fuerza resultante que actúa sobre el cuerpo, m es la masa del cuerpo, y a es la aceleración. La relación anterior es válida en cualquier sistema de referencia inercial.

Introducción[editar]

De acuerdo con la mecánica newtoniana, una partícula no puede seguir una trayectoria curva a menos que sobre ella actúe una cierta aceleración como consecuencia de la acción de una fuerza, ya que si esta no existiese, su movimiento sería rectilíneo. Asimismo, una partícula en movimiento rectilíneo solo puede cambiar su velocidad bajo la acción de una aceleración en la misma dirección de su velocidad (dirigida en el mismo sentido si acelera; o en sentido contrario si desacelera).
Algunos ejemplos del concepto de aceleración son:
  • La llamada aceleración de la gravedad en la Tierra es la aceleración que produce la fuerza gravitatoria terrestre; su valor en la superficie de la Tierra es, aproximadamente, de 9,8 m/s2. Esto quiere decir que si se dejara caer libremente un objeto, aumentaría su velocidad de caída a razón de 9,8 m/s por cadasegundo (siempre que omitamos la resistencia aerodinámica del aire). El objeto caería, por tanto, cada vez más rápido, respondiendo dicha velocidad a la ecuación:
v=at=gt=9,8\,t
  • Una maniobra de frenada de un vehículo, que se correspondería con una aceleración de signo negativo, o desaceleración, al oponerse a la velocidad que ya tenía el vehículo. Si el vehículo adquiriese más velocidad, a dicho efecto se le llamaría aceleración y, en este caso, sería de signo positivo.

Aceleración media e instantánea[editar]

Definición de la aceleración de una partícula en un movimiento cualquiera. Obsérvese que la aceleración no es tangente a la trayectoria.
Cada instante, o sea en cada punto de la trayectoria, queda definido un vector velocidad que, en general, cambia tanto en módulo como en dirección al pasar de un punto a otro de la trayectoria. La dirección de la velocidad cambiará debido a que la velocidad es tangente a la trayectoria y esta, por lo general, no es rectilínea. En la Figura se representan los vectores velocidad correspondientes a los instantes t y tt, cuando la partícula pasa por los puntos P y Q, respectivamente. El cambio vectorial en la velocidad de la partícula durante ese intervalo de tiempo está indicado por Δv, en el triángulo vectorial al pie de la figura. Se define la aceleración media de la partícula, en el intervalo de tiempo Δt, como el cociente:
 \langle\mathbf a\rangle = \mathbf{\bar{a}}= \frac{\Delta \mathbf v}{\Delta t}
Que es un vector paralelo a Δv y dependerá de la duración del intervalo de tiempo Δt considerado. La aceleración instantánea se la define como el límite al que tiende el cociente incremental Δvt cuando Δt→0; esto es la derivada del vector velocidad con respecto al tiempo:
\mathbf{a}= \lim_{\Delta t \to 0}\frac{\Delta \mathbf v}{\Delta t} = \frac{d \mathbf v}{dt}
Puesto que la velocidad instantánea v a su vez es la derivada del vector posición r respecto al tiempo, la aceleración es la derivada segunda de la posición con respecto del tiempo:
\mathbf{a} = \frac{d^2 \mathbf{r}}{dt^2}
De igual forma se puede definir la velocidad instantánea a partir de la aceleración como:
\mathbf v - \mathbf{v}_0= \int_{t_0}^t \left({\mathrm{d}\mathbf{v} \over \mathrm{d}t}\right)\,\mathrm{d}t
Se puede obtener la velocidad a partir de la aceleración mediante integración:
\mathbf{v}= \int_0^t \mathbf{a}\ \mathrm{d}t + \mathbf{v}_0

Medición de la aceleración[editar]

La medida de la aceleración puede hacerse con un sistema de adquisición de datos y un simple acelerómetro. Los acelerómetros electrónicos son fabricados para medir la aceleración en una, dos o tres direcciones. Cuentan con dos elementos conductivos, separados por un material que varia su conductividad en función de las medidas, que a su vez serán relativas a la aceleración del conjunto.

Unidades[editar]

Las unidades de la aceleración son:
1 m/s2
1 cm/s2 = 1 Gal

Componentes intrínsecas de la aceleración: aceleraciones tangencial y normal[editar]

Componentes intrínsecas de la aceleración.
En tanto que el vector velocidad v es tangente a la trayectoria, el vector aceleración a puede descomponerse en dos componentes (llamadas componentes intrínsecas) mutuamente perpendiculares: una componente tangencial at (en la dirección de la tangente a la trayectoria), llamada aceleración tangencial, y una componente normal an (en la dirección de la normal principal a la trayectoria), llamada aceleración normal o centrípeta (este último nombre en razón a que siempre está dirigida hacia el centro de curvatura).
Derivando la velocidad con respecto al tiempo, teniendo en cuenta que el vector tangente cambia de dirección al pasar de un punto a otro de la trayectoria (esto significa que no es constante) obtenemos
 \mathbf{a}= \frac{d\mathbf{v}}{dt} =
\frac{d}{dt}(v \,\mathbf{\hat{e}}_t) =
\frac{dv}{dt}\mathbf{\hat{e}}_t + v \frac{d\mathbf{\hat{e}}_t}{dt} =
a_t \mathbf{\hat{e}}_t + v(\boldsymbol{\omega} \times \mathbf{\hat{e}}_{\text{t}})
siendo \mathbf{\hat{e}}_t el vector unitario tangente a la trayectoria en la misma dirección que la velocidad y \boldsymbol{\omega} la velocidad angular. Resulta conveniente escribir la expresión anterior en la forma
 \mathbf{a}= \frac{d\mathbf{v}}{dt} =
a_t \mathbf{\hat{e}}_t + \frac{v^2}{\rho} \mathbf{\hat{e}}_n =
a_t \mathbf{\hat{e}}_t + a_n \mathbf{\hat{e}}_{\text{n}}
siendo
\mathbf{\hat{e}}_n el vector unitario normal a la trayectoria, esto es dirigido hacia el centro de curvatura de la misma,
\rho\, el radio de curvatura de la trayectoria, esto es el radio de la circunferencia osculatriz a la trayectoria.
Las magnitudes de estas dos componentes de la aceleración son:
 a_t = \frac{dv}{dt} \qquad\qquad\qquad a_n=\frac{v^2}{\rho}
Cada una de estas dos componentes de la aceleración tiene un significado físico bien definido. Cuando una partícula se mueve, su velocidad puede cambiar y este cambio lo mide la aceleración tangencial. Pero si la trayectoria es curva también cambia la dirección de la velocidad y este cambio lo mide la aceleración normal.
  • Si en el movimiento curvilíneo la velocidad es constante (v=cte), la aceleración tangencial será nula, pero habrá una cierta aceleración normal, de modo que en un movimiento curvilíneo siempre habrá aceleración.
  • Si el movimiento es circular, entonces el radio de curvatura es el radio R de la circunferencia y la aceleración normal se escribe como an = v2/R.
  • Si la trayectoria es rectilínea, entonces el radio de curvatura es infinito (ρ→∞) de modo que an=0 (no hay cambio en la dirección de la velocidad) y la aceleración tangencial at será nula o no según que la velocidad sea o no constante.
Los vectores que aparecen en las expresiones anteriores son los vectores del triedro de Frênet que aparece en la geometría diferencial de curvas del siguiente modo:
\mathbf{\hat{e}}_t es el vector unitario tangente a la curva.
\mathbf{\hat{e}}_n es el vector unitario normal a la curva.
\boldsymbol{\omega} es el vector velocidad angular que es paralelo al vector binormal a la curva.

Movimiento circular uniforme[editar]

Cinemática del movimiento circular.
Un movimiento circular uniforme es aquel en el que la partícula recorre una trayectoria circular de radio R con velocidad constante, es decir, que la distancia recorrida en cada intervalo de tiempo igual es la misma. Para ese tipo de movimiento el vector de velocidad mantiene su módulo y va variando la dirección siguiendo una trayectoria circular. Si se aplican las fórmulas anteriores, se tiene que la aceleración tangencial es nula y la aceleración normal es constante: a esta aceleración normal se la llama "aceleración centrípeta". En este tipo de movimiento la aceleración aplicada al objeto se encarga de modificar la trayectoria del objeto y no en modificar su velocidad.
 \mathbf{a}= \frac{d\mathbf{v}}{dt} =
\frac{dv}{dt}\mathbf{\hat{e}}_t + \frac{v^2}{R} \mathbf{\hat{e}}_n = 0 \cdot \mathbf{\hat{e}}_t + \frac{v^2}{R} \hat{\mathbf{e}}_n = \omega^2 R \ \hat{\mathbf{e}}_n

Movimiento rectilíneo acelerado[editar]

En el Movimiento Rectilíneo Acelerado, la aceleración instantánea queda representada como la pendiente de la recta tangente a la curva que representa gráficamente la funciónv(t).
Si se aplican las fórmulas anteriores al movimiento rectilíneo, en el que solo existe aceleración tangencial, al estar todos los vectores contenidos en la trayectoria, podemos prescindir de la notación vectorial y escribir simplemente:
 a= \frac{dv}{dt}
Ya que en ese tipo de movimiento los vectores \scriptstyle \mathbf{a} y \scriptstyle \mathbf{v} son paralelos, satisfaciendo también la relación:
v(t) = v_0 + \int_0^t a(\tau)\ d\tau
La coordenadas de posición viene dada en este caso por:
x(t) = x_0 + v_0t + \int_0^t (t-\tau)a(\tau)\ d\tau
Un caso particular de movimiento rectilíneo acelerado es el movimiento rectilíneo uniformemente variado donde la aceleración es además constante y por tanto la velocidad y la coordenadas de posición vienen dados por:
v(t) = v_0 + at, \qquad x(t) = x_0 + v_0 t + \frac{at^2}{2}

Aceleración en mecánica relativista[editar]

Relatividad especial[editar]

El análogo de la aceleración en mecánica relativista se llama cuadriaceleración y es un cuadrivector cuyas tres componentes espaciales para pequeñas velocidades coinciden con las de la aceleración newtoniana (la componente temporal para pequeñas velocidades resulta proporcional a la potencia de la fuerza dividida por la velocidad de la luz y la masa de la partícula).
En mecánica relativista la cuadrivelocidad y la cuadriaceleración son siempre ortogonales, eso se sigue de que la cuadrivelocidad tiene un (pseudo)módulo constante:
\mathbf{U}\cdot \mathbf{U} = c^2\ \Rightarrow\ 
2\mathbf{U}\cdot \frac{d \mathbf{U}}{d\tau} = 0\ \Rightarrow\ 
2\mathbf{U}\cdot \mathbf{A} = 0
Donde c es la velocidad de la luz y el producto anterior es el producto asociado a la métrica de Minkowski:
V\cdot W := \eta(V,W) = \eta_{\mu\nu}V^\mu V^\nu

Relatividad general[editar]

En teoría general de la relatividad el caso de la aceleración es más complicado, ya que debido a que el propio espacio-tiempo es curvo (ver curvatura del espacio-tiempo), una partícula sobre la que no actúa ninguna fuerza puede seguir una trayectoria curva, de hecho la línea curva que sigue una partícula sobre la que no actúa ninguna fuerza exterior es una línea geodésica, de hecho en relatividad general la fuerza gravitatoria no se interpeta como una fuerza sino como un efecto de la curvatura del espacio-tiempo que hace que las partículas no trayectorias rectas sino líneas geodéscias. En este contexto la aceleración no geodésica de una partícula es un vector cuyas cuatro componentes se calulan como:
A^\alpha = \frac{dU^\alpha}{d\tau}
+ \sum_{\beta,\gamma} \Gamma^\alpha_{\beta\gamma}U^\beta U^\gamma
Aquí \scriptstyle \alpha = 0, 1, 2, 3 (componente temporal y tres componentes espaciales). Se aprecia que cuando los símbolos de Christoffel \Gamma^\alpha_{\beta\gamma} una partícula puede tener aceleración cero aunque su cuadrivelocidad no sea constante, eso sucede cuando la partícula sigue una línea geodésica de un espacio-tiempo de curvatura no nula.